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Dimension reduction on neural activity paves a way for unsupervised
neural decoding by dissociating the measurement of internal neural pat-
tern reactivation from the measurement of external variable tuning. With
assumptions only on the smoothness of latent dynamics and of inter-
nal tuning curves, the Poisson gaussian-process latent variable model
(P-GPLVM; Wu et al., 2017) is a powerful tool to discover the low-
dimensional latent structure for high-dimensional spike trains. However,
when given novel neural data, the original model lacks a method to infer
their latent trajectories in the learned latent space, limiting its ability for
estimating the neural reactivation. Here, we extend the P-GPLVM to en-
able the latent variable inference of new data constrained by previously
learned smoothness and mapping information. We also describe a prin-
cipled approach for the constrained latent variable inference for tempo-
rally compressed patterns of activity, such as those found in population
burst events during hippocampal sharp-wave ripples, as well as metrics
for assessing the validity of neural pattern reactivation and inferring the
encoded experience. Applying these approaches to hippocampal ensem-
ble recordings during active maze exploration, we replicate the result that
P-GPLVM learns a latent space encoding the animal’s position. We fur-
ther demonstrate that this latent space can differentiate one maze context
from another. By inferring the latent variables of new neural data during
running, certain neural patterns are observed to reactivate, in accordance
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with the similarity of experiences encoded by its nearby neural trajec-
tories in the training data manifold. Finally, reactivation of neural pat-
terns can be estimated for neural activity during population burst events
as well, allowing the identification for replay events of versatile behav-
iors and more general experiences. Thus, our extension of the P-GPLVM
framework for unsupervised analysis of neural activity can be used to
answer critical questions related to scientific discovery.

1 Introduction

Memory critically requires the firing of neurons in the hippocampus dur-
ing ongoing experiences and afterward as the resultant memories are con-
solidated. In rodents, individual neurons in the hippocampal subfields are
activated when an animal explores a specific location (the neuron’s place
field). Sparsely active at an individual level, the ensemble of place fields
is thought to provide a location signal that can support navigation. While
rodent studies have focused on spatial memories, hippocampal neurons
can be generally understood to represent the conjunction of the sensory
features associated with a particular context (Moser et al., 2015) and the tem-
poral sequences that connect local contexts across time during an experi-
ence (Eichenbaum & Cohen, 2014; Eichenbaum, 2017). In this cognitive map
framework, the ensemble activity thus represents unobserved conceptual
places that evolve over time on a latent manifold. Importantly, sequential
firing patterns of neural ensembles reactivate in a temporally compressed
manner during some of the population burst events (PBEs) that occur dur-
ing sharp-wave ripple oscillations in sleep or quiet wakefulness (Wilson &
McNaughton, 1994; Skaggs & McNaughton, 1996; Kudrimoti et al., 1999;
Nádasdy et al., 1999). By decoding those events, it has been shown that the
replay trajectories show a continuum of conformity to the original expe-
rience, including variability in momentum and both forward and reverse
reexpression (Lee & Wilson, 2002; Foster & Wilson, 2006; Diba & Buzsáki,
2007; Csicsvari et al., 2007; Davidson et al., 2009; Krause & Drugowitsch,
2022). Traditionally, individual replay events have been identified based on
a strong assumption of ordered consistency with patterns expressed during
exploration. Consequently, unordered replay of contexts or ordered replay
of more complicated routes are often excluded from subsequent analysis.
Thus, while much has been learned about memory consolidation and recall
from the study of replay, existing approaches have colored our understand-
ing. Therefore, a technique for decoding neural activity without strongly
stereotyping the patterns represented or requiring a specifically spatial en-
coding model would be a powerful tool for quantitatively exploring the
cognitive map and thus understanding memory.

To extract the information from spike trains with minimal prior assump-
tions, one practicable approach is to find a low-dimensional embedding
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Extended P-GPLVM for Neural Decoding 1451

Figure 1: Schematic diagram of the extended P-GPLVM model. Internal tuning
curves and smoothness information learned from training data are then used to
constrain the inference of test data latent variables in the same latent space.

that can reveal the underlying dynamics. The Poisson gaussian-process la-
tent variable model (P-GPLVM) proposed by Wu et al. (2017) is a prob-
abilistic, nonlinear, and dynamic dimension-reduction approach. It infers
temporally smooth low-dimensional latent neural trajectories and smooth,
nonparametric internal tuning curves from spike trains without referring
to external variables. This model consists of Poisson spiking observations
and two gaussian processes, one governing the temporal evolution of la-
tent variables and another governing the nonlinear mapping from high-
dimensional neural data to low-dimensional latent variables.

In the learned low-dimensional latent space, mapping any possible ex-
ternal variable into the embedding, how external variables are represented
in this latent space can be revealed, and by measuring the goodness of fit
between sequences of ensemble activity and the learned model, we can de-
tect the reactivation of neural patterns associated with experiences encoded
in the training data (Yu et al., 2009; Rubin et al., 2019; Nieh et al., 2021).
Unsupervised neural decoding can be achieved by dissociating the mea-
surement of neural pattern reactivation from the measurement of external
variable tuning. However, an approach for inferring latent variables of new
data points in the learned latent space is lacking from the original P-GPLVM
model, limiting its utility for decoding.

In this article, we extend the P-GPLVM framework to enable the latent
variable inference of new inputs constrained by the learned smoothness pa-
rameters and tuning curves (see Figure 1) and develop subsequent analy-
ses to evaluate the new input data in the latent space. We also present a
preprocessing pipeline for PBE decoding when using models trained from
behavioral data. The original P-GPLVM can be used to reveal encoded in-
formation in neural activity and discover neural trajectory evolution but
only within the given training data. This extended model and PBE prepro-
cessing pipeline, especially, make use of information learned in the model
and enable the effective and unsupervised decoding of new neural activity
during both behavior and PBEs.
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2 Poisson Gaussian-Process Latent Variable Model

2.1 Model Structure. Binning spike counts into M time bins from N
neurons creates the matrix of spike trains Y = {ym}M

m=1, ym ∈ R
N×1. The mth

time bin was recorded at time tm, m ∈ (1, . . . , M). In this model, two la-
tent variable matrices will be learned: the log firing rate for Poisson spik-
ing, F = {fm}M

m=1, fm ∈ R
N×1, and the P-dimensional latent variables, X =

{xm}M
m=1, xm ∈ R

P×1.

2.1.1 Latent Dynamics. Each feature of the latent variable matrix X
evolves according to a gaussian process depending on time t, xp(t) ∼
GP (0, kt ), p ∈ (1, . . . , P), where kt (t, t′) = r exp(−|t − t′|/l), governing the
temporal smoothness of xp. Writing as a multivariate normal distribution,

xp,1:M|t1:M ∼ N (0, Kt ). (2.1)

The covariance Kt is an M × M matrix with entries kt at all pairs of time bins.

2.1.2 Nonlinear Mapping. Let h : RP → R be a nonlinear mapping func-
tion, describing the firing rate of a neuron in the mth time bin as λm = h(xm).
The log tuning curve of the nth cell in response to the latent variable x
is modeled as another gaussian process as fn(x) = log hn(x) ∼ GP (0, kx),
n ∈ (1, . . . , N). This process has kx(x, x′) = ρexp(−‖x − x′‖2

2/2δ2) as a spa-
tial covariance function. Therefore, the log firing rates of the nth neuron in
all time bins have the multivariate normal distribution,

fn,1:M|x1:M ∼ N (0, Kx), (2.2)

with the M × M covariance matrix Kx, whose entries are kx evaluated for
all pairs of x. By combining f over all the neurons, F ∈ R

N×M as firing rates
in units of spike counts per time bin are obtained. Note that this is per bin
rather than per second. This has consequences for PBE decoding, as de-
scribed below.

2.1.3 Poisson Spiking. Finally, for the nth neuron in the mth time bin, ob-
served spike counts yn,m are assumed to be drawn from a Poisson process
given the latent firing rate λn,m = exp( fn(xm)),

yn,m| fn, xm ∼ Poisson(exp( fn(xm))). (2.3)

2.2 Model Training. During training, the model iteratively infers la-
tent variables of training data without mapping constraints and optimizes
smoothness parameters. In each iteration, X is first fixed and F is optimized.
For each neuron, the posterior over fn is given by
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Extended P-GPLVM for Neural Decoding 1453

p(fn|yn, X) ∝ p(yn|fn)p(fn|X). (2.4)

The optimal f̂n is found by maximizing the log conditional distribution,

log p(fn|yn, X) = log p(yn|fn) − 1
2

f�
n K−1

x fn − 1
2

log |Kx| + constant. (2.5)

Then, fixing F, the optimal X is discovered by maximizing the conditional
likelihood,

XMAP = argmaxX

N∑
n=1

p(yn|X)p(X), (2.6)

where p(yn|X) is given by

p(yn|X) ∝
∫

p(yn|fn)p(fn|X)dfn. (2.7)

Using Laplace’s method, the approximated log likelihood conditioned on
X is

log q(yn|X) = log p(yn|f̂n) − 1
2

f̂�
n K−1

x f̂n − 1
2

log |IM + KxWn|, (2.8)

where Wn = −∇∇ log p(yn|fn). Hyperparameters θ = {ρ, δ, r, l} are found by
maximizing the same likelihood function.

3 Extensions of P-GPLVM

3.1 Constrained Latent Variable Inference of New Data.

3.1.1 Latent Variable Initialization. During model training, P-GPLVM
learns smoothness parameters, θ, and internal mapping function, log hn :
R

P → R, parameterized by latent variables f̂train = { f̂m}M
m=1 for each cell

and X̂train = {x̂m}M
m=1 from training data. In the original P-GPLVM paper,

the tuning curve vectors fgrid are evaluated at the grid of latent variables
Xgrid = {xg}G

g=1 using a joint gaussian distribution with X̂train and f̂train,

[
f̂train

fgrid

]
∼ N

(
0,

[
Ktrain k

k� Kgrid

])
, (3.1)
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1454 D. Daiyi Luo, B. Giri, K. Diba, and C. Kemere

where Ktrain = kx(X̂train, X̂train), Kgrid = kx(Xgrid, Xgrid), and k = kx(X̂train,

Xgrid) are the covariance matrices. The entry kx(X1, X2)m,g = kx(x1m, x2g). The
posterior distribution of fgrid can then be written as

fgrid|Xgrid, f̂train, X̂train ∼ N (k�K−1
trainf̂train, diag(Kgrid) − k�K−1

traink). (3.2)

Given new input data from the same group of neurons, Ynew = {yt}T
t=1, yt ∈

R
N×1, the latent variables, Xnew = {xt}T

t=1, xt ∈ R
P×1, do not have an analyti-

cal solution as the hidden layer fn is unknown. Hence, for each yt , the pos-
terior probability of xt location is estimated in a coarse grid Xgrid spanning
the latent space using a Bayesian approach. Xnew are initialized with ele-
ments in Xgrid that maximize the posterior probability. At the tth time bin,
the posterior over each element in Xgrid is

p(xg|yt, F̂train, X̂train) ∝ p(yt |xg, F̂train, X̂train)p(xg), (3.3)

where we’ve assumed a uniform prior over xg during initialization. The
prior over yt is

p(yt |xg, F̂train, X̂train) =
N∏

n=1

p(yn,t | fn,g)p( fn,g|xg, f̂trainn, X̂train). (3.4)

The latent variable xt corresponding to yt is initialized with the xg with max-
imum posterior.

3.1.2 Impose Smoothness Constraints. Merely using MAP tuning curves to
constrain the latent variable inference of new input data omits the learned
temporal smoothness in the latent space. To impose both temporal smooth-
ness and tuning constraints, subsequent iterations are needed. We noted
that employing fgrid and Xgrid as tuning curve vectors is computationally
expensive; considering a samples per dimension, a P-dimensional Xgrid con-
tains aP elements. Moreover, a majority of the grid elements contain mini-
mal information as no x̂train is located nearby. To save computational costs
during iterations and to preserve the tuning details of f̂train in response to
X̂train as much as possible, F̂train and X̂train were directly used as the tuning
curve vectors (TC), F̂TC, and their encoded latent variables, X̂TC.

Iterations are similar to those during unconstrained inference as de-
scribed in section 2.2, but the smoothness parameters are fixed as learned,
and the mapping function log hn is constrained by f̂TC and X̂TC. This is
achieved by substituting p(fn|X, f̂TC, X̂TC) for p(fn|X) in equations 2.4 and
2.7. As in equation 3.1, the joint distribution with f̂TC and X̂TC gives the pos-
terior of fn as

fn|X, f̂TCn , X̂TC ∼ N (μn, σ
2IT ), (3.5)
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where μn = k�K−1
TC f̂TCn, k = kx(X̂TC, X), and KTC = kx(X̂TC, X̂TC) and σ 2 is

the observation noise. Correspondingly, equation 2.5 is modified as

log p(fn|yn, X, f̂TCn, X̂TC)

= log p(yn|fn) − 1
2σ 2 (fn − μn)�(fn − μn) − T

2
log σ 2. (3.6)

Finally, obtaining the optimal f̂n, equation 2.8 is modified as

log q(yn|X, f̂TCn, X̂TC) = log p(yn|f̂n) − 1
2σ 2 (f̂n − μn)�(f̂n − μn)

−1
2

log |IT + σ 2Wn|. (3.7)

3.2 Preprocessing for PBE Decoding. Critically for our model, neu-
ral activity during PBEs is temporally compressed relative to that ex-
pressed during exploration. Consequently, the firing rate model learned on
exploration-related neural activity will not properly model PBEs. This is ad-
dressed in two steps, choosing a shorter time bin (implicitly compressing
time) and explicitly scaling the model parameters. Temporal compression
implies that the time intervals between pairs of place cells activating dur-
ing exploration running are expected to be proportional to those during
replay. Thus, the cross-correlation histogram (Harrison et al., 2013; Karls-
son & Frank, 2009) of spike trains from place cell pairs is used to find the
PBE time bin size that would best match the binned behavioral data. Place
cells are identified in either running direction and then are pooled. For each
place cell pair with spike trains s1, . . . , sM from one cell and t1, . . . , tN from
another, time lags between any pairs of spikes (sm, tn) within 4 seconds are
recorded. The histogram of all these spike time lags is the cross-correlation
histogram (CCH) for this cell pair. All histograms are centered at 0 s time
lag and share the same number of bins. For ease, the histogram bin size of
CCH during active exploration is set the same as that used for P-GPLVM
analysis of these data. Among all pairwise combinations of place cells, cell
pairs with place field (where peak firing rate occurs) distances larger than
the 80th percentile of the distribution of travel distance in 4 seconds are
excluded from subsequent analysis. For each included cell pair, the Pear-
son correlation between CCH during exploration and CCH during PBEs is
evaluated. The optimal bin size for PBEs is found by maximizing the sum
of all significant positive Pearson correlation coefficients using a range of
possible PBE bin sizes.

As the unit of our tuning curves is spike counts per time bin, for PBE
decoding, the firing rates of P-GPLVM tuning curves learned using neural
activity during active exploration must be further scaled. Scaling by the ra-
tio of the time bin sizes is found to yield good PBE-decoding performance.
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We varied this scaler by −40% to +100%, and the resulting metrics are con-
sistent (i.e., 0.02–0.07 in section 4.4, where the time bin ratio is 0.034).

3.3 Analysis in Latent Space.

3.3.1 Number of Well-Separated Manifolds. The hippocampus remaps be-
tween different environments, meaning that whether a given neuron is ac-
tive, and if so, how its spatial tuning will relate to that of other neurons
is essentially random in different environments (Moser et al., 2015; Alme
et al., 2014), though recent studies have challenged this concept (Cai et al.,
2016). This implies that different environments should correspond to well-
separated manifolds in latent space. Thus, we asked whether the trajecto-
ries of the low-dimensional latent variable X̂train are organized on a single
manifold or on multiple well-separated manifolds. This procedure consists
of constructing a K-nearest neighbor graph in X̂train and then counting the
number of connected components in the graph. Components containing
less than 3% of the total number of points are considered residual compo-
nents. Starting with a small number, K is gradually increased until there are
no residual components left. The number of well-separated manifolds will
stabilize as K continues to increase multiple times. This stabilized number
is defined as the number of connected components in X̂train. Each separated
manifold is denoted as X̂(i) hereafter.

3.3.2 Congruence with the Learned Manifold(s). We present three metrics
to assess the congruence of new test data with the learned model. The most
important one, log likelihood, reflects the adjacency of new input with the
tuning curve vectors not only in the low-dimensional latent space but also
in the high-dimensional neuronal space, which by comparing with shuf-
fled data can answer the basic question of whether it is a neural pattern
reactivation. After being validated as reactivation, spatial consistency and
step distance in the low-dimensional latent space can provide a high-level
summary of the temporal pattern and spatial distribution of the latent tra-
jectory. Training and test data can contain multiple continuous recording
segments. Each continuous segment is a single neural trajectory in the la-
tent space. When the neural cofiring patterns and dynamics of new inputs
Ynew match the learned model perfectly, their estimated latent trajectories
Xnew will (1) have much higher likelihood values compared with shuffled
data, (2) span the manifold of X̂TC, and (3) progress smoothly along the
manifold.

Log likelihood. Log likelihood measures how well the learned P-GPLVM
model fits the test data. The joint probability of Y, F, X for test data is com-
puted as

p(Y, F, X|F̂TC, X̂TC, θ) = p(Y|F)p(F|X, F̂TC, X̂TC, ρ, δ)p(X|r, l). (3.8)
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Extended P-GPLVM for Neural Decoding 1457

The log likelihood (LLH) of a continuous segment in test data is written as

LLH = log p(Y, F, X|F̂TC, X̂TC, θ)

=
N∑

n=1

T∑
t=1

log p(yn,t | fn,t ) +
N∑

n=1

log p(fn|X, f̂TCn , X̂TC, ρ, δ)

+
P∑

p=1

log p(xp|r, l). (3.9)

Recall that

yn,t | fn,t ∼ Poisson(exp( fn,t )), (3.10)

fn|X, f̂TCn , X̂TC, ρ, δ ∼ N (kx(X̂TC, X)�kx(X̂TC, X̂TC)−1f̂TCn, σ
2IT ), (3.11)

xp|r, l ∼ N (0, Kt ). (3.12)

Spatial consistency. This metric measures how well a latent trajectory,
Xnew = {xt}T

t=1, spans the latent variable manifold(s) of the tuning curve
vector, X̂TC = {x̂m}M

m=1. First, for each point xt in the trajectory, its K-nearest
neighbors are searched in the manifold X̂TC, obtaining the set of its near-
est neighbors St = {x̂mk}K

k=1 and its distances to those neighbors {||xt −
x̂mk ||2}K

k=1. When the trajectory spans the manifold nicely, the union of neigh-
bor sets,

⋃T
t=1 St , should have many more elements than by chance. The

number of all identified neighbors is then weighted by the neighbor dis-
tances to integrate the neighborhood quality into the measure.

For each x̂m ∈ ⋃T
t=1 St , its distance to its closest point in Xnew, dm =

mint,k ||xt − x̂mk ||2 is estimated. Then the spatial consistency of this trajec-
tory in the latent space is computed as

consistency =
M∑

m=1

wm, (3.13)

where

wm =
⎧⎨
⎩

c
c+dm

, if x̂m ∈ ⋃T
t=1 St

0, otherwise
(3.14)

which means that when one x̂m is identified as a neighbor, it contributes
to the spatial consistency. This contribution is weighted by the distance to
its nearest neighbor on the trajectory, which is 1 when the distance is 0,
and then decays as the distance increases, reaching 0.5 when the distance

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1449/2462336/neco_a_01685.pdf by R
ice U

niversity user on 05 August 2024
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is c. The parameter c is set as 20% of the standard deviation of X̂TC. When
X̂TC contains more than one separated manifold, the standard deviation is
computed as the average within-manifold standard deviation,

c = 20%

√√√√ 1
M

∑
i

∑
x̂m∈X̂(i)

||x̂m − μi||22, (3.15)

where μi is the center of manifold X̂(i).
A higher value of spatial consistency indicates that this trajectory travels

a long way along the tuning curve manifold(s) rather than only jiggling at
a small local area or locating far away. The spatial consistency to X̂TC is first
used to evaluate the neural trajectory behavior in the latent space. Further,
when X̂TC contains more than one well-separated manifold X̂(i), we also
estimate the manifold contribution ratio to the consistency value, which is
computed as in equation 3.13 but only for x̂m ∈ X̂(i). The ratio between these
contribution values from manifolds indicates to which manifold the trajec-
tory belongs.

Average step distance. This metric reveals the consistency between tem-
poral adjacency and pattern-matched location adjacency. The average Eu-
clidean distance of each step in each latent trajectory of Xnew is estimated.
In general, the tuning curve constraint tends to drive Xnew toward their
pattern-matched locations on the X̂TC manifold. When the new data have
different temporal sequences from the training data, pattern-matched lo-
cations of temporally adjacent points are mostly distant, leading to longer
step distances.

3.3.3 External Variables Decoding. Similar trajectories in the latent space
indicate repetitions of neural activity encoding similar experiences. There-
fore, the decoding of external variables can be simply achieved by a
K-nearest neighbor (KNN) decoder. Given a test data point, its correspond-
ing external variables can be revealed by referring to those of its K near-
est neighbors among X̂TC, the training data points, in the latent space. The
external variables of the training data neighbors are not necessarily consis-
tent since the neural activity might not be tuned by only one single external
variable.

4 Experiments and Results

The data set used in this article is a neural recording collected in the dor-
sal hippocampal CA1 and CA3 areas from a rat. The recording started with
a 3 hour rest session (pre), and then the animal was exposed to a novel
Z-shaped maze (maze1) for 50 minutes, running back and forth to get re-
wards at the two ends. Following another two hours of rest (post1), the
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Extended P-GPLVM for Neural Decoding 1459

animal explored a novel U-shaped maze (maze2) for 50 minutes. Finally, the
animal went through a 5 hour rest session (post2). Spike trains during the
two maze exploration sessions were binned into 500 ms time bins. Animal
positions were linearized, and then active running periods (speed >3 cm/s
and peak speed >5 cm/s) were extracted along with their corresponding
time bin indices.

Known for encoding a wide range of variables like spatial locations and
sensory cues and even abstract knowledge, neural activity in the hippocam-
pus is believed to form a cognitive map of their real-world experiences sup-
ported by latent representations (Whittington et al., 2022). In this data set,
as the neural activity at each time bin is represented as one data point in
the latent space in this model, we expect to see the locations of latent data
points disambiguating different neural patterns and to see the spatial struc-
ture of all latent data points revealing the topology of the encoded animal
experiences.

4.1 Exploration in One Maze. We first examined this P-GPLVM with
the neural activity when the animal was exposed to only one maze (maze1).
The linearized animal positions during running in maze1 exploration ses-
sion are shown in Figure 2A and corresponding original positions in Fig-
ure 2B. The data from spike trains during active running in maze1 for 200 s
in total were selected as training data for the model (orange lines in Fig-
ure 2A, colored scatters in Figure 2B).

Theoretically, a higher number of latent space dimensions can capture
more details about information encoded in the neural activity. The more
complicated the behavioral paradigm is, the higher the dimension of latent
space is needed to reveal the topology of the underlying neural structure
fully. However, a higher latent space dimension dictates longer model train-
ing time and significantly larger memory demand, and it might bring about
the curse of dimensionality as gaussian process estimation depends heavily
on distances in the latent space. For this data set, we picked the dimension
of latent variables to be 3 for reasonable training time, easy visualization,
and good representation of the animal’s behavioral paradigm. Higher latent
dimensions (i.e., 4, 5) have results of similar metric values.

After fitting the model, smoothness parameters θ and latent variables of
training data, X̂train and F̂train, were obtained. Only one well-separated man-
ifold is found in X̂train, suggesting that there are no multiple distinctly differ-
ent neural processes found in these training data, aligned with the fact that
all the training data are from similar experiences in maze1. The trajectories
in this manifold share a similar path, revealing the topology of the animal
behavior where it ran along a maze track repeatedly. Given the known spa-
tial tuning in the hippocampus, to examine the information encoded in the
latent space, X̂train are color-coded with the corresponding animal linearized
positions. Position information appears to be encoded along the manifold
smoothly (see Figure 2C). The latent neural trajectories seem to be a bit
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Figure 2: (A) Linearized animal position during running periods in maze1 ex-
ploration session. The orange/black lines indicate the continuous segments
used as training and test data. The start of each segment is marked by a large
filled circle. Each step in the test data is marked by a small dot. Scatters are
color-coded by linearized animal positions, the same in subsequent panels (B to
D and G to I). (B) Colored scatters of original animal positions in the training
data. The black line indicates the same test data segment in panel A. (C) Latent
variables of training data in the learned P-GPLVM. Continuous segments are in-
dicated by dotted lines as latent neural trajectories. (D) Inferred neural trajectory
of test data in the learned latent space. The semitransparent markers are identi-
cal to the dot scatters in panel C, which, in this panel, indicates the latent vari-
able manifold of tuning curve vectors, X̂TC. The black line depicts the inferred
neural trajectory of test data, progressing along the manifold X̂TC in accordance
with the real animal positions (from blue to purple). (E) Log likelihood of the
original test data (dashed red line) and its shuffled versions (histograms). (F)
Estimated step distances versus spatial consistency to X̂TC of the inferred neu-
ral trajectory in panel D compared with its cell identity-shuffled (cell ID-shuf),
individual circular-shuffled (cir-shuf), and time-shuffled (time-shuf) versions.
The three black-edged circles indicate one example of cell ID-shuffled test data
(ex.1), of circular-shuffled test data (ex. 2), and of time-shuffled test data (ex. 3),
respectively. (G, H, I) Same presentation as in panel D, but the inferred latent
trajectories of ex. 1 to 3 in panel F.

unkempt, which is still reasonable because this was the animal’s first ex-
posure to maze1.

Next, the spike trains of a continuous running segment in maze1 are
used as test data to evaluate the decoding performance (black line in
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Extended P-GPLVM for Neural Decoding 1461

Figures 2A and 2B). We estimated the neural pattern reactivation of the test
data in the learned latent space. In Figure 2D, the manifold of tuning curve
vector latent variables X̂TC, which is X̂train in this setting, is shown as the
colored semitransparent markers. Using the Bayesian approach, the initial-
ized latent variables of test data appear as a bumpy trajectory (light red
line). The constrained inference is used, and the latent variables converged
to a smooth latent trajectory after 15 iterations (black line). By comparing
the color in Figures 2B and 2D, it is obvious that the inferred neural trajec-
tory of test data proceeds closely along those of training data with similar
experiences, where the animal traveled from positions in blue to positions
in purple, in accordance with the reactivation of similar neural patterns.

To validate this internal neural pattern reactivation and contrast the
inferred latent variables of test data, three kinds of surrogate data were
generated:

• Cell identity(ID)-shuffled data, by randomly permuting the cell iden-
tity of the test data, which scrambles the original neural coactivation
patterns and permutes neuronal firing rates but preserves the tempo-
ral sequences.

• Local individual circular-shuffled data, by randomly and circularly
permuting the test data of each cell individually within each contin-
uous segment, which scrambles coactivation patterns but preserves
the temporal smoothness and local neuronal firing rates.

• Local time-shuffled data, by randomly permuting the temporal order
of the test data within each continuous segment, which preserves the
coactivation patterns but scrambles the time sequences.

For each shuffle type, we generated 500 surrogate test data. Metric values
and example latent trajectories of the original and surrogate data are shown
in Figure 2.

Figure 2E depicts the distribution of LLH values of the inferred latent
variables of the original test data and of the surrogate test data. Overall,
the original test data have a higher LLH value than all the surrogate data.
Figure 2F shows their step distance and spatial consistency values in scat-
ters. Inferred latent trajectories of example surrogate data are shown in Fig-
ures 2G to 2I, whose metric values are indicated in the black-edged scatter
in Figure 2F. In the latent space, the trajectories of cell ID-shuffled and time-
shuffled test data look distinct from that of the original test data trajectory,
while the circular-shuffled test data trajectory has visually similar behavior.

Note that the iterative inference process searches for an optimal balance
between temporal smoothness and tuning curve constraints. Because of the
changed relative firing rates among cells in cell ID-shuffled data, the tuning
curve constraints push the trajectories far away from X̂TC, where temporal
smoothness constraint dominates, leading to small step distances, diminu-
tive spatial consistency values, and the lowest LLHs among all types of
shuffled data. With preserved local neuronal firing rates, circular-shuffled
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data trajectories stay in the similar area as the original data, but due to
the scrambled coactivation patterns and preserved temporal smoothness,
the tuning curve constraints are compromised by the temporal smoothness
constraint, resulting in less likely but smooth trajectories with step distances
comparable to the original test data, slightly lower spatial consistency val-
ues, and significantly lower LLH values. As for time-shuffled data, with
intact coactivation patterns at each time point, the tuning curve constraints
are dominating during the inference, driving the latent variables to the cor-
responding locations on the manifold of X̂TC as the original test data do,
while the temporal smoothness is sacrificed, resulting in spiky trajectories
with large step distances, comparable spatial consistency, and slightly lower
LLH values.

We contrast the LLH values of original test data with its shuffled ver-
sions by z-scoring. Given that the shuffled test data have occasional occur-
rences of extremely low LLH values, the traditional z-scoring using mean
and standard deviation is not ideal because of its sensitivity to outliers.
Therefore, we use a robust z-scoring here, calculated by dividing the dif-
ference from the median by the median absolute deviation. The z-scored
LLH of the original test data among its circular-shuffled versions is 13.56,
and among its time-shuffled versions, 8.98, indicating that the test data are
a valid sequential reactivation of neural patterns captured in the training
data. This measure separately verifies the matching of coactivation patterns
between test data and tuning curves (when compared with circular-shuffled
test data), and the matching of temporal sequences (when compared with
time-shuffled test data).

4.2 Exploration in Two Mazes. Next, we looked into neural activity
during exploration in more than one environment context. Since hippocam-
pal place field remapping is observed among different contexts (Kubie et al.,
2020), we wondered whether this remapping is present and, if so, whether
this model can detect the different neural processes of two contexts.

Spike trains during active running in maze1 for 200 s in total (yellow
lines in Figure 3A, colored scatters on the left in Figure 3B) and those in
maze2 for 200 s in total (scarlet lines in Figure 3A, colored scatters on the
right in Figure 3B) are selected and concatenated as the training data to train
a new P-GPLVM. The test data are from maze1, the same as in the previous
section (black line in Figures 3A and 3B). All the semitransparent mark-
ers in the scatter plot are colored by the corresponding linearized animal
positions.

In X̂train of the newly learned model, two well-separated manifolds, m1
(X̂(1)) and m2 (X̂(2)), are found, each of which turns out to contain all data
points from one of the maze contexts. Using the same color code as in Fig-
ures 3A and 3B on X̂train, position information appears to be encoded along
the corresponding context manifold smoothly (see Figure 3C). Thus, this ap-
proach is capable of detecting the presence of two environment contexts as

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1449/2462336/neco_a_01685.pdf by R
ice U

niversity user on 05 August 2024



Extended P-GPLVM for Neural Decoding 1463

Figure 3: (A) Linearized animal position during running periods in maze1 and
maze2 exploration sessions. The yellow/scarlet lines indicate the segments in
maze1/maze2 used as training data. The black line indicate the test data. Scat-
ters are color-coded by contexts and linearized animal positions, the same in
panels B to C and G to J. (B) Scatters of original animal positions in training
data from maze1 (left) and maze2 (right). The black line indicates the same test
data segment as in panel A. (C) Following fitting the training data, latent vari-
ables are separated into two distinct manifolds, m1 and m2. Each data point is
colored by its corresponding linearized animal position as in panel A. (D) Log
likelihoods (LLH) of test data (red dashed line), cell ID-shuffled (purple his-
togram), individual circular-shuffled (blue histogram), and time-shuffled sur-
rogate data (green histogram). (E) Inferred latent neural trajectory step distance
versus spatial consistency to X̂TC of original test data (red +), of cell ID-shuffled
(purple scatters), of individual circular-shuffled (blue scatters), and of time-
shuffled (green scatters) surrogate data. Example surrogate data indicated in
one black-edged circle from either shuffle type is then shown for visualization.
(F) Manifold contribution to neural trajectory spatial consistency from m1 ver-
sus from m2, of original and surrogate test data. (G) Latent neural trajectories as
initialized (light red line) and optimized after iterations (black line) of test data
in the latent space. Latent variables of tuning curve vectors, X̂TC, are shown in
semitransparent markers color-coded by the animal positions, same as in panel
C. Both initialized and optimized trajectories of test data are associated with the
corresponding context manifold. Unlike the bumpy initialization, the optimized
neural trajectory is smooth and progresses according to the animal positions.
(H–J) Same representations as in panel G inferred trajectory of panel H, ex.1 for
cell ID-shuffled test data, panel I, ex. 2 for individual circular-shuffled test data,
and panel J, ex. 3, for time-shuffled test data, as indicated in black-edged circles
in panels E and F.
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well as capturing the encoded position information merely from the neural
activity in the training data.

Again, cell ID-shuffled, individual circular-shuffled, and time-shuffled
surrogate test data were generated. Along with the original test data, their
latent variables in the new latent space are inferred, which behave similar to
those in section 4.1. Figure 3D depicts the distribution of LLH values of the
original and surrogate test data. Cell ID-shuffled test data have much lower
LLHs than all the other types of shuffled data. Circular-shuffled data have
slightly smaller LLHs than time-shuffled data. The original test data have
a higher LLH value than all surrogate data, where z-scored LLH among
its circular-shuffled versions is 11.75, and among its time-shuffled versions,
8.40, confirming that the test data provide a valid sequential neural pattern
reactivation.

Next, we investigated the content of this neural pattern reactivation by
looking into the latent variable locations relative to X̂train. The inferred la-
tent trajectory of the test data and initialization in this new latent space are
shown in Figure 3G. The trajectory is similar to those neural trajectories of
training data with similar experiences, traversing the same arm of maze1,
from positions blue to purple, just as in Figure 3B.

As a high-level summary of the spatial distribution and dynamics of
these neural trajectories, Figure 3E shows the step distance and spatial con-
sistency values to X̂train, while Figure 3F shows the manifold contribution
to spatial consistency values from m1 versus from m2. Examples are shown
in Figures 3H to 3J (metric values indicated in black-edged scatters in Fig-
ures 3E and 3F). The inferred cell ID-shuffled test data trajectories tend to
have small steps and are located far from both manifolds, having diminu-
tive spatial consistency values. Compared with the original test data trajec-
tory, circular-shuffled data have smooth trajectories around the same area,
with slightly smaller spatial consistency values and comparable step dis-
tances. Latent variables of time-shuffled test data have similar locations to
the original test data but mostly take big jumps across time. Like the original
test data, both circular-shuffled and time-shuffled test data have similarly
high m1 contribution to spatial consistency and diminutive m2 contribu-
tion, suggesting the test data are reactivating neural patterns encoding ex-
perience in maze1 rather than maze2.

4.3 Validating the Neural Pattern Reactivation. In the results shown
in the previous section, the test data from maze1 were found to be a neural
pattern reactivation of training data in maze1 rather than maze2. However,
it is not always the case that the training data have included experiences
similar to the test data. To examine the validity of neural pattern reactiva-
tion, the spike trains during multiple other continuous running segments
in maze1 and in maze2 were used as test data (see the black lines in Fig-
ure 4A), and we compared their inferred latent variables in the latent space
learned from only one maze.
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Extended P-GPLVM for Neural Decoding 1465

Figure 4: (A) Linearized animal position during running periods in maze1 and
maze2 exploration sessions. The yellow/scarlet lines indicate the segments in
maze1/maze2 used as training data. The black lines indicate the test data in
maze1 and maze2. Scatters are color-coded by contexts and linearized animal
positions. (B–D) Results in the latent space learned from running segments
in maze1. (E–F) Results in the latent space learned from running segments in
maze2. (B,E) Log likelihood (LLH) values of original test data and their shuf-
fled versions in the corresponding latent space. LLHs are normalized by the
number of time bins to show all segments together. The yellow/scarlet dotted
line shows the LLH value of each running segment in the original test data in
maze1/maze2. The purple/green/blue dotted line indicates the median LLH
value of cell ID-/time-/circular-shuffled versions of each running segment in
test data. The shades indicate ±3 * median absolute deviation. Segments whose
robust z-scored LLHs among their circular-shuffled versions greater than 5 are
marked by an asterisk. (C,F) Each circle shows the z-scored LLH value of each
running segment among its circular-shuffled versions versus its time-shuffled
versions. The size of the marker indicates the spatial consistency value of the
segment. Yellow/scarlet circles indicate running segments in maze1/maze2.
(D,G) Each circle shows the average step distance versus spatial consistency
value of each running segment with the same representation as in panels C
and F.
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The latent space learned from maze1 is the same as in section 4.1, trained
by the maze1 part of the training data in section 4.2 (see the yellow lines in
Figure 3A). Figure 4B shows the contrast of LLH values among the orig-
inal test data and shuffled versions of each running segment. Similar to
the inferred latent variables of circular shuffled test data in Figure 2H, la-
tent variables of test data in maze2 still span the training data manifold.
However, the LLH values of original test data in maze2 (scarlet dotted line)
are lower than those in maze1 (yellow dotted line) because they belong to
a neural process different from the training data. Nevertheless, if the test
data contain only experiences from maze2, we cannot make this compari-
son to verify that they are not neural pattern reactivations. The original test
data from both mazes have distinctly higher LLH values than their cell ID-
shuffled versions (purple dotted line and shading). Contrasting with their
time- (green dotted line and shading) and circular-shuffled versions (blue
dotted line and shading), LLH values remain noticeably higher for the orig-
inal test data in maze1 but become comparable for the original test data in
maze2. Therefore, test data with an LLH value significantly higher than the
cell ID-shuffled versions do not qualify as a valid neural pattern reactiva-
tion. Local individual circular-shuffled data are a better fit than simple cell
ID-shuffled test data to serve as a proper surrogate data of “natural random
cofiring patterns” due to the relatively stable neuronal firing rates even in
different contexts. For each running segment, the robust z-scored LLH of
the original test data among its time- and circular-shuffled versions is de-
picted as a circle in Figure 4C, whose size indicates the spatial consistency
value of that segment. The z-scored LLHs among circular-shuffled versions
separate test data in maze1 from those in maze2 with a threshold of 5, dif-
ferentiating the test data that belong to the neural process the same as the
training data from those that do not.

Similar results are observed in the latent space learned from maze2,
trained by the maze2 part of the training data in section 4.2 (see the scar-
let lines in Figure 3A). Setting a threshold of 5 for the z-scored LLH val-
ues among circular-shuffled data, all test data passing the threshold are in
maze2, belonging to the same neural process as the training data. Only one
running segment of short duration (5.5 s) in maze2 is missed.

Figures 4D and 4G show the spatial consistency and the average step
distance values of latent variables of the test data in the two latent spaces.
Test data that are from the same neural process as training data seem to have
higher spatial consistency values and smaller steps than those that are not.
But there is no consistent threshold separating the test data from different
mazes.

Overall, z-scored LLH value among circular shuffled test data is sensitive
to the difference of population cofiring patterns and thereby is able to differ-
entiate neural processes and serve as an indicator of the validity of neural
pattern reactivation. To our knowledge, this is the first method by which
neural repetition can be robustly evaluated in a neural-process-specific

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1449/2462336/neco_a_01685.pdf by R
ice U

niversity user on 05 August 2024



Extended P-GPLVM for Neural Decoding 1467

manner with no need for comparison with the neural activity known to
belong to certain neural processes.

4.4 PBE Decoding. Reactivation of hippocampal place cell sequences
of previous experiences has been observed in PBEs, which occurred during
slow wave sleep or when the animal had paused running in the exploration
session, typified by their decoded positions traversing a spatial path at fast
and constant speeds (Lee & Wilson, 2002; Karlsson & Frank, 2009; David-
son et al., 2009). We show the neuronal spiking in part of the maze1 running
test data in section 4.3 and in an example replay event during a PBE in Fig-
ures 5A and 5B. For visualization, cells are sorted according to the peaks
of their internal tuning curves along the common path of X̂(1), the maze1
manifold in section 4.2.

We have demonstrated that the model learned from training data during
running can capture the neural pattern reactivation in test data during run-
ning well. Next, we evaluated whether this running-state model could be
used to estimate the pattern reactivation and infer the replayed experience
in neural data during PBEs, which occurred when the animal had paused
running in the exploration session.

4.4.1 Identifying Replay Events. First, the best time bin size for PBE data
was searched. In both the maze1 and maze2 exploration sessions, the 80th
percentile of 4 seconds’ travel distance is 86 cm to 87 cm. Therefore, only
place cell pairs with their place field distances less than 87 cm are included
in the subsequent analysis. It turns out that for both maze sessions, the sum
of significant (p < 0.01) positive Pearson correlation coefficient r between
CCH during running and CCH during PBEs across cell pairs reached its
peak when the PBE time bin size is 17 ms. Therefore, PBEs were binned
into 17 ms time bins.

Traditionally, assuming that spatial location is the major factor driving
the neural activity change, PBEs are decoded using a memoryless Bayesian
decoder based on the spatial tuning curves of identified place cells, which
are estimated by averaging the neural firings at each spatial bin across time
during active running. Then, replay scores are evaluated by the linearity of
the decoded position distribution as a function of time. Replay events are
identified by their high replay scores compared with shuffled data. In this
data set, we estimated spatial tuning curves in the two running directions
separately and used a Bayesian model to decode the PBE positions follow-
ing the traditional method. The Bayesian decoded position posterior distri-
bution of the example replay event in Figure 5B is shown as the grayscale
matrix in Figure 5D.

In contrast, our model identifies replay events of experiences by verify-
ing internal neural pattern reactivation among PBEs, no longer restricted to
a certain replay route.
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Figure 5: Illustration of a replay event. (A) Spikes during active running seg-
ments. Cells are sorted according to the peaks of their internal tuning curves.
Cells with firing rates larger than 10 Hz are excluded. (B) Spikes during an ex-
ample replay event during a PBE. Cell order is the same as in panel A. (C) The
black dotted line depicts the actual animal position during the running seg-
ments in panel A. Red dots depict animal positions of training data points iden-
tified as the nearest neighbors of test data points in the P-GPLVM latent space.
Each red dot represents one nearest neighbor whose size indicates the neigh-
bor adjacency. (D) The grayscale matrix depicts the animal position posterior
distribution by traditional Bayesian position decoder. Each pixel represents the
posterior probability of a position bin at a time point, normalized across posi-
tion bins to sum to 1. Corresponding context and position colors of position bins
are indicated on the left border, the same color code as Figure 3A. Red dots de-
pict animal positions of training data points identified as the nearest neighbors
of test data points in the P-GPLVM latent space.
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In the latent space learned using running data from the two maze explo-
ration sessions described in section 4.2, we examined whether the binned
PBE data could be identified as neural pattern reactivations. Firing rates
of the tuning curve vectors were scaled by the time bin size ratio 17/500.
Among 562 PBEs detected within immobile periods of the maze1 explo-
ration session, we randomly selected 100 PBEs as test data. To evaluate the
resulting latent trajectories, for each PBE, 200 surrogate data for each of the
three shuffling types were generated and metric values were assessed.

We consider a PBE to be a significant replay event when its LLH value
is larger than all of those of its circular-shuffled versions and its robust z-
scored LLH among circular-shuffled versions is greater than 3. This thresh-
old is lowered from 5, which is for test data in the behavioral timescale in
section 4.3, to 3 for test data in PBEs whose neural firing patterns are not
exactly the same. Moreover, a significant replay event should have a latent
trajectory located close to the tuning curve latent variable X̂TC manifolds to
guarantee the strength of the tuning curve constraint. Therefore, the aver-
age distance of the latent trajectory to its nearest neighbors identified during
measuring the spatial consistency value is estimated. PBEs with an average
nearest neighbor distance larger than the standard deviation of X̂TC are ex-
cluded. Given that neuron firings of a replay are not exactly the temporally
compressed version of those during corresponding behavior, this criterion
is a strict indicator of the ensemble cofiring pattern reactivation and there-
fore a strict indicator of the validity of being a replay event. Fifty out of the
selected 100 PBEs meet the criterion and are considered significant replay
events.

4.4.2 Decoding Replayed Experiences. Following the identification as a re-
play event, we can now investigate what is replayed and how it is replayed.

The external variables of replayed experiences can be inferred by those
of their nearest neighbors in X̂TC in the latent space. For test data during
running, the decoding result of neural activity in Figure 5A using a KNN
position decoder in the P-GPLVM latent space is shown in Figure 5C. The
actual animal position of each test data point in these running segments
(black dotted line) is reliably mirrored by those of its nearest neighbors in
X̂TC (red dots, k = 6). Similarly, based on the inferred latent neural trajec-
tory of neural activity in Figure 5B, we overlap the KNN position decoding
results as red dots with the traditional Bayesian decoding results in Fig-
ure 5D. Results from both methods suggest the experience of running from
position blue to position green is replayed. However, note that the tradi-
tional Bayesian model is tracking repeated animal position change and our
method is tracking repeated experience. The traditional Bayesian decoder
could work well here because position information is indeed encoded in
the neural activity in this data set, as shown in section 4.1. Figure 6C shows
the manifold contribution to spatial consistency value from m1 manifold
versus from m2 manifold of each PBE. As expected, since the animal hadn’t
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Figure 6: Inferring latent trajectories of PBE data in the P-GPLVM latent space
learned from running data. (A) Robust z-scored LLH values among circular-
shuffled versions versus among time-shuffled versions of the 100 selected PBEs.
The size of each circle indicates the spatial consistency value of the PBE. PBEs
not meeting the replay criterion are in gray, and PBEs identified as significant
replay events are colored according to their z-scored LLH among time-shuffled
versions. (B) Average step distance of the latent trajectory of each test datum
versus their spatial consistency to the tuning curve latent variable manifolds,
X̂TC. PBEs are presented in the same way as in panel A. (C) Histogram of ratio
of manifold contribution to spatial consistency. All of the significant PBEs are
associated with the maze1 manifold. (D–F) Same representation as in Figure 5D
for the example PBEs (No. 27, No. 65, and No. 96) which are highlighted by
markers in panels A and B. (G–I) Inferred latent trajectories of the example PBEs
in panels D to F in the P-GPLVM latent space. While the initialized trajectories
are jumpy, after iterations, the trajectories of the PBEs all converge to the maze1
manifold (same representation as in Figure 3G).

experienced maze2 yet, almost all of the probable replay events belong to
the m1 manifold rather than to the m2 manifold, indicating that they are
replay events of the maze1 experience.
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The continuity of the replay can be revealed by the z-scored LLH among
its time-shuffled versions. Figure 6A shows the LLH values z-scored among
circular-shuffled versions versus z-scored among time-shuffled versions, of
the 100 selected PBEs. Each PBE is depicted as a circle, whose size stands
for its spatial consistency value. All significant replay events are colored ac-
cording to their z-scored LLH among time-shuffled versions, and insignif-
icant PBEs are colored in gray.

The temporal pattern of the replayed experience and the portion of ex-
periences being replayed in each identified replay were also investigated
with the aid of its average step distance and spatial consistency to X̂TC (see
Figure 6B). Three example PBEs among those significant replay events are
highlighted to illustrate the implications of those metrics (yellow markers
in Figures 6A and 6B). For comparison, their posterior probabilities of ani-
mal positions obtained by the traditional Bayesian model (grayscale matrix)
are shown in Figures 6D to 6F, along with their KNN position decoding re-
sults obtained in our P-GPLVM latent space (red dots). Their inferred latent
trajectories are visualized subsequently in Figures 6G to 6I.

PBE No. 27 in Figures 6D and 6G exemplifies replay events that have
“jumps” in their trajectories, which are not the typical replays that can be
recognized in traditional methods. The traditional Bayesian position de-
coder reveals its replayed route from location green to location blue with
a jump in the middle. According to the KNN decoder in the latent space,
the latent trajectory of this event suggests a similar route as the Bayesian
model, only that the jump is smoothed out to some extent. Note that even
after searching for the best-matched time bin size and scaling the firing
rate, the neural firing patterns of a replay event are still not exactly the
same as those during the behavioral timescale. Therefore, when the tun-
ing curve constraints for PBEs are not strong enough, sudden jumps in the
replay trajectories can be smoothed by the temporal smoothness constraint
in P-GPLVM. However, this discontinuity can still be revealed by its low
z-scored LLH among time-shuffled data. The latent trajectory of this exam-
ple PBE has a larger step distance relative to those with comparable spatial
consistency because of the jump.

PBE No. 65 in Figures 6E and 6H exemplifies replay events that have
more complicated routes. As suggested by the Bayesian decoded positions,
its route goes to and fro around locations green and yellow. The KNN de-
coder shows a smoothed route at similar locations. Indicated by its rela-
tively high z-scored LLH among time-shuffled data, PBE No. 65 is more
likely to be a continuous replay compared with the previous example, PBE
No. 27. Because of the smoothed to-and-fro route, the latent trajectory of
PBE No. 65 has a small step distance and a small spatial consistency value,
which indicates stationary or slightly oscillating trajectories.

PBE No. 96 in Figures 6F and 6I, also in Figure 5D, exemplifies the typ-
ical replays recognized in traditional methods, which are continuous and
one-directional. Both the traditional Bayesian decoder and our P-GPLVM
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KNN position decoder disclose this PBE as a continuous replay of experi-
ence traveling from location purple all the way to location green. Its long
step distance and high consistency value close to the diagonal of the chart
in Figure 6B also suggest that it replays extensive experience at a steady
speed.

To sum up, for a significant replay event, by combining the observation
of metric values, we are able to evaluate the external variables, the tempo-
ral continuity, and the temporal pattern of the replayed experience and also
the portion of experiences being replayed. Note that we have not used po-
sition data in any of our analyses except inferring external variables. This
approach is the first presentation of a method for continuously decoding
and identifying replay events without relying on external variables.

4.4.3 Replayed Experience Overview. Finally, with no need to assume ex-
ternal variables that drive the neural activity or predetermine replay be-
havior patterns, the summary of replay behavior throughout all sessions in
this experiment can be revealed by applying the extended P-GPLVM model
to all PBEs detected. Latent neural trajectories of all PBEs are inferred.
For each PBE, 100 circular-shuffled versions were generated to identify sig-
nificant replay events. PBE occurrence time versus the ratio of manifold
contribution to PBE spatial consistency value is shown in Figure 7 from
pre rest session to post2 rest session in time order, where each PBE is
depicted as a circle, whose size indicates its spatial consistency value
to X̂TC. Circles on the top/bottom line mean 100% of identified near-
est neighbors for the latent neural trajectories are from the m1/m2
manifold, indicating affiliation with maze1/maze2 context experience.
Circles located in between suggest mixtures. PBEs identified as signif-
icant replay events are colored according to its z-scored LLH value
among their circular-shuffled versions. In the pre rest session, identi-
fied significant replay events are comparably sparse and have small spa-
tial consistency values. In maze1 and maze2 exploration sessions, as
expected, almost all the significant replay events are associated with
their current contexts and have comparably larger consistency and
z-scored LLH values, which indicates long and sequential experience re-
play. In the post1 rest session, the majority of significant replay events are
associated with the maze1 context and most of them have small consistency
values. Those replay events became less associated with maze1 as the rest
time increased. In the post2 rest session, replay events seem to be more fre-
quent, and most of them are associated with maze2 context.

5 Conclusion

As the results have shown, without referring to any external variables,
P-GPLVM is a powerful tool to capture nonlinear neural population dy-
namics in the hippocampus by discovering the low-dimensional structure
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Figure 7: PBE occurrence time versus ratio of manifold contribution for PBE la-
tent trajectories in all sessions. The top solid line indicates 100% of the trajectory
nearest neighbors are from the maze1 manifold (m1). The bottom solid line in-
dicates 100% of the nearest neighbors are from the maze2 manifold (m2). Each
circle represents one detected PBE, whose size indicates its spatial consistency
value. Significant replay events are colored in black to light red according to
their z-scored LLH values among their circular-shuffled versions.

underlying the neural activity, which reveals important encoded external
variables such as the number of contexts and the topology of animal spatial
behavior (i.e., position).

In this article, this model is extended to leverage those advantages in
the neural decoding scenario by enabling the constrained latent variable
inference of new neural data and proposing a family of analyses for result
evaluations. This constrained inference approach requires much less com-
putational cost than relearning the model with training data combining old
and new data. This extended model is flexible in that for new neural data
during either running or PBEs, neural trajectories can be inferred in the
latent space learned from training data during running. For the first time,
internal neural pattern reactivation can be verified in a neural-process-
specific manner without the need for explicit comparison with the neural
activity known to belong to certain neural processes. External variables
can then be decoded based on the external experiences corresponding to
the repeated neural patterns. Metrics are defined that for the first time
enable the identification of versatile continuously decoded replay using
a model trained only with neural activity (and refine this definition to
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allow for both sequential and nonsequential events). Given the accessible
probabilistic internal tuning curves, this model can also provide insights
for research looking into cell ensemble composition.
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